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Abstract. Using the radial ladder operators AY and  A; defined in solving the hydrogen 
atom radial equation with the factorisation method, we develop a new device by which 
the calculations on the average value of r ' ,  the  inner product of the radial wavefunctions 
a n d  the matrix element of r are simplified and  by which some new recurrence relations 
are  derived. 

1. Introduction 

The factorisation method to solve the Schrodinger equation was proposed and discussed 
in the 1940s and 1950s. For a comprehensive review see [ l ]  and references therein. 
It is an  elegant and powerful device by which eigenvalues and eigenfunctions for some 
physically important solvable potentials can be obtained straightforwardly. Owing to 
the development of supersymmetry quantum mechanics ( SSQM) ,  this method has 
attracted fresh interest in recent years. Based on Witten's model [2] of SSQM, many 
papers explored various aspects [3] stemming from the factorisation which are very 
significant to quantum mechanics. 

However, if  we examine carefully the works published to date on the factorisation 
method, it can be found that some simple and useful consequences have not received 
sufficient attention. One of them is the application of the SchrGdinger radial ladder 
operators. 

It is well known that the angular momentum ladder operator and  the creation and 
annihilation operators of. the one-dimensional harmonic oscillator are very important 
to quantum mechanics. All these operators are the results of factorisation. We find 
that the Schrodinger radial ladder operators can be applied in order to greatly simplify 
practical quantum mechanics calculations. In this paper. we intend to adopt the 
familiar hydrogen atom to illustrate the point. 

The paper is organised as follows. Section 2 presents the standard factorisation 
solving method of the hydrogen atom and gives the definition of the radial ladder 
operators. Section 3 discusses the calculation of the average value of the power of r. 
Section 4 investigates the inner product and orthogonality of the radial wavefunctions. 
Section 5 derives the recurrence relations for matrix elements of r. Section 6 summarises 
the conclusions of the present work. 
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2. Solving the hydrogen atom radial equation by the factorisation method 

We denote the reduced radial wavefunction of the hydrogen atom with a well defined 
value 1 of the angular momentum by U,( r ) ,  which satisfies a reduced radial Schrodinger 
equation 

and the boundary and normalising conditions 

U/(O) = L'/(W) = 0 

lo* d r  U:(r) = 1 

where we adopt the atomic unit of length. 
If we define two operators, according to the standard factorisation method [4], by 

d 1+1  1 
d r  r 1+1  

A*=*-+--- 
1 -  (2.4) 

which are adjoint to each other in the reduced radial wavefunctions space, then a little 
algebra shows that 

(2.5) 

H; are two Hermitian positive semidefinite operators. From (2.4) and  (2.5) and 
considering the 'degeneracy theorem' of SSQM, we can immediately derive the following 
relationship between the eigenvalues and eigenfunctions of the two partner Hamil- 
tonians H; . 

(i) The equation 

A; U:"( r )  = 0 (2.6) 

has a normalisable solution which satisfies (2.2) and is the lowest eigenstate of H f ,  
corresponding to the eigenvalue zero, i.e. 

(2.7) Hf  U:"!( r )  = & ) + ) I O 1  U'O! 

& ; + I ( " )  = 0. 

I ( r )  

and  

(2.8) 

(ii) Apart from the lowest eigenstate of H;, the partner Hamiltonians H;' and H; 

k = 0, 1, 2, . . . (2.9) 

( i i i )  The eigenfunctions of H; and H J  corresponding to the same eigenvalues are 

have identical bound state spectra, i.e. their eigenvalues satisfy 
& ; - l i h )  = & ; + ) ~ A t l )  

where k is the number of the energy level above E ) " ! .  

related by 

(2.10) 
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Combining all these results with (2.5), we can straightforwardly write the solution 
of the hydrogen atom problem. Given 1, the lowest energy of the hydrogen atom is 
evidently 

& ; o ) = - l / ( l + l ) ’ .  (2.1 1 )  

For different I ,  we can obtain the recurrence relation 
l k )  - ( k + l )  

& / + I  - E /  . 
Using (2.12) k times altogether, we obtain 

( k ) -  ( k - I )  = 
& - E I+ 1 . . . = & i”+k = - 1/ ( 1  + k -k 

(2.12) 

(2.13) 

Hence, the familiar energy spectrum of the hydrogen atom is reproduced, i.e. 

& , I = & l k ) = - l / n ’  (2.14) 

where 

n = l + k + l  n = 1 , 2 , .  . . (2.15) 

is just the principal quantum number and k is the number of nodes of the radial 
wavefunction. 

Equation (2.10) gives the recurrence relations 

(2.16) 

where 

C,/ = ( & i k )  - E ; o ) ) - v 2  

= [ l / ( r + l ) 2 - l / n 2 ] - ” ’ .  (2.17) 

It follows from (2.16) that the operator A ; ,  acting upon U!,t/‘(r) ,  decreases the 
number of the nodes by one and simultaneously increases the angular quantum number 
by one, while the operator A t ,  acting upon U!,t,Tii)(r), increases the number of the 
nodes by one and decreases the angular quantum number 1 by one. Therefore, we call 
them the Schrodinger radial ladder operators. 

Given n, with 1 = n - 1 ,  the reduced wavefunction U,,n - l ( r )  (i.e. Ui”(r )  in (2.6)) 
has no node and is called the key function, and satisfies 

A i -  1 U n , n  - i ( r )  = 0 (2.18) 

or explicitly 

(2.19) 

Solving the first-order differential equation, we can obtain a normalised key function 

(2.20) 

Starting from the key function and using the recurrence relation (2.16), we can easily 
obtain all the reduced radial wavefunctions of the hydrogen atom bound states. 

U,,,, - I ( r )  = (2/ n )’’+I! ?[ ( 2 n  ) ! ] -  ’ ’ r “  exp( - r /  n ). 
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By comparison with the well known creation and annihilation operators, uf and 
U,  of the one-dimensional oscillator, the radial ladder operators have some different 
properties, one of which is that their commutation relations are not constant. For 
instance, 

1'+1+2 
[ A ; ,  A:] = - 

r2 

1 - 1 '  
[ A ; ,  A ; ]  = - 

r2  

1 ' -  I 
[ A ; ,  A , ]  =yz. 

(2.21) 

(2.22) 

(2.23) 

However, we find that the radial ladder operators are very useful in practical calculations 
on the hydrogen atom, as shown in the following sections. 

3. The average value of the power of r 

For convenience, in the following discussion we denote U n , ( r )  by Id),  the matrix 
elements of rs  by ( n ' l ' ~ r s ~ n l )  and the average value of r' simply by ( T i ) / .  With these 
notations, (2.16) and (2.18) can be written in the form 

In, I +  1) = CnIA;/n, I )  

In, I ) =  C,,A:(n, I +  I )  

and 

Note that inl) satisfies the normalising condition, i.e. 

( n l / n l )  = 1 

( n # i ' i d )  = o 
and  the orthogonality is also satisfied, i.e. 

(3.4) 

(3.5) 

but only when I = I '  and n # n'.  

simple and useful to illustrate the technique. 
First, we calculate the average values of r' in the key function In, n - l),  which are 

Step (i). From the definition of the radial ladder operators, we have 

n 1  
r n  

;(A' + A -  ) = - - -  - n - 1  n-1  

and hence 

However, from (3.3) we know that 

( A ; - , ) , , - ,  = 0 

(3.6) 
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and 

(A:-l)n-l = 0. 

Thus 

1 (:L =7‘ 
Step (5). Multiplying both sides of (3.6) by r, we obtain 

fr(A:-, +A,-,) = n - r / n  

and hence 

( r ) n - l  = n 2  -;n(r(A:-, + A i - l ) ) n - l .  

By means of (3.3) and considering 

[ r ,  A:-l] =- -1  

we have 

(3.9) 

(3.10) 

(3.11) 

(3 .12)  

(3.13) 

( r ) n - l  = n ( n + f ) .  (3 .14)  

Step (iii). In general, multiplying both sides of (3.6) by r s  with any s and using a 

( r s ) f l - l  = n ( n  +ts)(rs-’)n- l .  (3.15) 

If s > 0, using (3.15) s times altogether, we arrive at  the final result. However, if s < 0, 
it has to be used in the reverse order, i.e. 

similar method as above, we immediately obtain a recurrence relation 

(3.16) 

Since it is necessary that the average value of r’ is positive, the restriction must be 
imposed on s that 

s > - 2 n - 1 .  (3 .17)  

For an  arbitrary Inl) we have 

$( r i (  A; + A;)) /  = ( I  + l ) (  r S - I ) /  - ( I  + l ) - ’ (  r S ) / .  (3.18) 

Since A;lnl)#O if I #  n - 1 ,  the previous method is not available. However, when 
I +  1 < n - 1 ,  we have 

$(r’(AT+A;))/ =fCi,((A;r’AtA;),+, +(A;r’A;A;)/+l) 

=;Ci,((A;Atr’A;),+, +(A;r’(A7A;))/+l +(A;[r’, AtlAT),,,). (3.19) 

Substituting (2 .5)  into (3.19) and considering (2 .17) ,  we get 

i(r’(AT + A ; ) ) /  = i((r‘Ay + A;r’)l-l - s ( r ‘ - ’ ) / ) .  (3.20) 

Since 

r’A;+A; r‘ = (-s+2/+2)r‘-’  - 2 ( I +  l ) - ’ r ’  (3 .21)  

we finally obtain a recurrence relation for the average value 

( I +  I ) - ’ ( r ‘ )  - ( I  + 1 + $ s ) ( r ’ - ’ ) /  = ( I  + 1 ) - ‘ ( r ’ ) / +  I - ( I  + 1 - $ s ) ( r ’ - ’ ) / + , .  (3.22) 
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Taking s = 0, from (3.22) we can immediately obtain 
( r - l ) ,  = ( T - ' ) / + ~  =. . , = ( r - ' )n - i  = l / n '  

which are just the results given by the viriai theorem. 
Setting s = 1, we have 

(3.23) 

n - 2  

= t[3n2- 1 ( 1 +  I ) ]  (3.24) 

which is a very useful result. 

[ ( I +  1) + t ( s  + l)](rs), - ( I +  l ) - ' ( r iT ' ) /  = [ ( I +  1) -i(s + ~ ) ] ( r ' ) ~ + ,  - ( I +  1 ) - ' ( r ' 7 ' ) , + ,  
(3.25) 

for which, considering the necessity of the positive average value, we can also obtain 
the restriction 

~ > - 2 1 - 3 .  (3.26) 

When s < 0, (3.21) should be rewritten as 

4. Orthogonality and inner product calculation 

As pointed out in the previous section, the radial wavefunctions are orthogonal to one 
another if they have the same angular quantum number I ,  which can be proved as 
follows. 

If n > n' and 1 = n'- 1, then by means of (3.2) and (3.3), we have 

(n', n'-l ln,  r ~ ' - l ) = C , , ~ - , ( n ' ,  n ' - l lA i - i l n ,  n')=O. (4.1) 
If n > n '  and 1 < n ' -  1, then by successive applications of (3.2) and  (3.3) we have 

(n'I~nI)=Cn,(n',I~A~~n,1+1)=C,,~C~~(n',I+1~n,1+1)= . . .  
= CnlCn./+, . . . C, ,n  -'CL:,, - ? .  , . C;:(n', n'- i in,  n'- 1) 

= O  (4.2) 
where (4.1) is used in the last step. Although we consider n > n '  only, the proof is 
universal. 

For any inner product (n'I ' ln/) ,  we can derive a recurrence relation. For definiteness 
we set 1 < n - 1 and then have 

(n'I'lnI)= C,,(n'I'lATIn, I +  1). (4.3) 

AT = bj+'A; + b:-'A,, + b)"' (4.4) 

b ) "=(21+3) / (1+ / '+3 )  (4.5) 
b j - '=  ( I  - / ' ) / ( I  + 1'+ 3) (4.6) 
b)"'  = (21 + 3)(  I - / ' ) / ( I '  + 1 )( I + 1 ) ( I  + 2). (4.7) 

Setting 

from (2.4) it can be obtained that 

Substituting (4.4) into (4.3), we obtain 
(n'I'lnI)= b!+'C,,/C,;!(n', I f +  Iln,  I +  l)+bj"'C,,,(n'I'ln, I +  1) 

+ b;-'Cn/C;!+l(n',  ['In, I+2). (4.8) 
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Equation (4.8) is just the required recurrence relation which seems to be quire 
complex. In  fact, it enables us not only to simplify the calculation of the inner product, 
but also to derive the general formula in some cases. We illustrate the point with two 
examples. 

(i) If  1 ’=  n ’ -  1 and I = n -2, then since 

(n’, n’ln, n - 1) = 0 (4.9) 

and 

(fl’ ,f l’-l~n, n)=O 

we obtain 

(4.10) 

( n ’ ,  n‘-lln, n-2)=b!,0.’ . lC,,n-,(n’,  n’-lln,  n-1). (4.11) 

Therefore we need only to calculate a simple integral of two key wavefunctions. 
(ii) If I ‘ =  n ’ - 2  and 1 = n - 2 ,  we can obtain 

( n ’ ,  n’-21n, n -2)= bj;C_:Cn~,_~C,~,,-2(n‘,  n ‘ -  lln, n - l)+bjP12C n , n -  ,(n‘, n ‘ - 2 / n ,  n - 1) 
= [b‘,‘-iCn,n-2Ciln,-l+ bkOI, b(0) n’-lCn,n-’Cn’,n’-:](n’,  n ’ -  Iln, n - 1) 

(4.12) 

where (4.11) is used. In this case we also need only to calculate a simple integral of 
two key functions. 

5. Matrix elements of r 

In many practical calculations of quantum physics, the matrix elements of r are very 
important, By means of the ladder operators, we can derive some useful recurrence 
relations. 

First, it is readily verified that 

21AT- = (21 + 1 )A:  + A ;  - 2( 21 + 1 )/ r. (5.1) 
Multiplying (5.1) from the right by In’l) and simultaneously from the left by ( n ,  Ilr, we 
have 

(5.2) 21( n, llrAT-lln‘l) = (21 + 1)( n1lrA;ln’l) + (n1lrAr1nf1) - 1(21+ 1 ) (  n1ln’l). 

Since 

( n l l n ’ l )  = 0 n # n ‘  (5 .3)  

[ r ,  A ; ]  = -1 (5.4) 

2 I (  n1l rAT- 1 n’l) = (21 + 1 )( rill A;’r/ n’1) + (nll  rA; I n ‘ I ) .  ( 5 . 5 )  

( 5 . 6 )  

(5.7) 

and 

we obtain 

Using (3.1) and (3 .21,  we finally obtain 

~ ~ ~ , - ~ 2 / ( n 1 ~ i - ~ n ’ ,  I -  1 )  = c ; , ’ ( ~ I +  ~ ) ( n ,  I +  l lrIn‘/)+ C;‘,(nIlrln’, I +  1). 

~ ; , ; - ~ 2 1 ( n ‘ ,  l lrln,  I -  I ) =  ~ , ‘ , ( 2 1 +  l ) ( n ’ ,  I +  1lrln1)+ C;,’(n’Ilrln,  I +  1 ) .  

Interchanging n and n ‘ ,  we obtain another relation 
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Equations ( 5 . 6 )  and (5 .7)  are two recurrence relations which were given by Infeld 
and  Hull [l]. I f  we can determine the matrix element corresponding to the highest 
angular quantum number i, then we can calculate all matrix elements of r by using 
these formulae successively. When n > n’, for example, to find such a starting point 
merely requires the calculation of (n’, n ’ -  l l r lnn’)  which can also be obtained by means 
of ladder operators. 

Since 

and 

(n’, n ’ -  l l r ( A ~ , - , + A ~ , ) l n n ’ )  

= ( n ’ ,  n‘- l \ [ r ,  A:.-,]ln, n’)+C,f . (n’ ,  n’- l lr ln,  n ’ +  1) 

= - ( n ’ ,  n ’ -  l ( n ,  n’)+ ci,!.(n’, n ’ -  l lr ln,  n ’ +  1) 

then, combining (5.8) and  (5.9),  we obtain 

(n ’ ,  n ’ -  l l r lnn’)  

(5 .9 )  

2n’ (n’+  1)* n‘( n‘S 1 )  
- - (n’, n ’ -  ~ l n ,  n ‘ ) -  Ci,!,(n‘, n ’ -  llrln, n ’ +  1). (5.10) 

2n’+ 1 2n’+ 1 

This is also a new recurrence relation. Applying (5.10) and (4.8) successively, the 
starting point can be found. 

6. Conclusions 

From the above discussions we can see that, although the radial ladder operators are 
more complex than the angular momentum ladder operators and  the creation and  
annihilation operators of the one-dimensional harmonic oscillator, their application 
does simplify calculations of the average values and matrix elements. By using the 
device developed in this work, we can avoid lengthy integrals and  d o  not require a 
detailed knowledge of complicated special functions. 

Since there is a close connection between the ladder operators and the factorisation, 
the development of SSQM based on factorisations should stimulate more attention to 
the radial ladder operators. 

I n  this paper, as an example, we have discussed only the hydrogen atom but we 
believe that these methods can be generalised to other solvable potentials. The results 
will be given elsewhere. 
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